Redox Reactions

8.1 Classical Idea of Redox Reactions -Oxidation and Reduction Reactions

- Which of the following is redox reaction?
 - (a) Evaporation of H₂O
 - (b) Both oxidation and reduction
 - (c) H₂SO₄ with NaOH
 - (d) In atmosphere O₃ from O₂ by lightning (1997)

8.2

Redox Reactions in Terms of Electron Transfer Reactions

- Without losing its concentration, ZnCl₂ solution cannot be kept in contact (with)
 - (c) Au
- (d) Ag
- (1998)

8.3 Oxidation Number

What is the change in oxidation number of carbon in the following reaction?

$$CH_{4(g)} + 4Cl_{2(g)} \rightarrow CCl_{4(l)} + 4HCl_{(g)}$$

(a) + 4 to + 4 (b) 0 to +4

- (a) + 4 to + 4
- (c) -4 to +4
- (d) 0 to -4 (NEET 2020)
- The correct structure of tribromooctaoxide is

(a)
$$O = Br - Br - Br - O$$

(b)
$$O = Br - Br - Br = O$$

(NEET 2019)

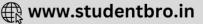
- following reactions disproportionation reactions?
 - (i) $2Cu^{+}$ $Cu^{2+} + Cu^{0}$
 - (ii) $3\text{MnO}^{2-} + 4\text{H}^{+} \longrightarrow 2\text{MnO}^{-} + \text{MnO} + 2\text{H O}$ $\stackrel{4}{\longrightarrow} \stackrel{\Delta}{\longrightarrow} 4$
 - (iii) 2KMnO₄ $K_2MnO_4 + MnO_2 + O_2$
 - $(iv) 2MnO_4^- + 3Mn^{2+} + 2HO \longrightarrow 5MnO_2^+ + 4H^+$

Select the correct option from the following.

- (a) (i) and (iv) only
- (b) (i) and (ii) only
- (c) (i), (ii) and (iii)
- (d) (i), (iii) and (iv)
 - (NEET 2019)
- The oxidation state of Cr in CrO₅ is
 - (a) -6
- (b) +12
- (c) +6
- (d) +4

(Odisha NEET 2019, 2014)

- The correct order of N-compounds in its decreasing order of oxidation states is
 - (a) HNO₃, NO, N₂, NH₄Cl
 - (b) HNO₃, NO, NH₄Cl, N₂
 - (c) HNO₃, NH₄Cl, NO, N₂
 - (d) NH₄Cl, N₂, NO, HNO₃
 - (NEET 2018)
- For the redox reaction,


$$MnO_{4}^{-} + CO_{2}^{2-} + H^{+} \rightarrow Mn^{2+} + CO_{2} + HO_{2}$$

The correct coefficients of the reactants for the balanced equation are

	MnO-	C O ²⁻	\mathbf{H}^{+}	
	4	2 4		
(a)	16	5	2	
(b)	2	5	16	
(c)	2	16	5	
(d)	5	16	2	

- Hot concentrated sulphuric acid is a moderately strong oxidizing agent. Which of the following reactions does not show oxidizing behaviour?
 - (a) $Cu + 2H_2SO_4 \rightarrow CuSO_4 + SO_2 + 2H_2O$
 - (b) $S + 2H_2SO_4 \rightarrow 3SO_2 + 2H_2O$
 - (c) $C + 2H_2SO_4 \rightarrow CO_2 + 2SO_2 + 2H_2O$
 - (d) $CaF_2 + H_2SO_4 \rightarrow CaSO_4 + 2HF$ (NEET-II2016)

(NEET2018)

10. (I) $H_2O_2 + O_3 \longrightarrow H_2O + 2O_2$ (II) $H_2O_2 + Ag_2O \longrightarrow 2Ag + H_2O + O_2$

Role of hydrogen peroxide in the above reactions is respectively

- (a) oxidizing in (I) and reducing in (II)
- (b) reducing in (I) and oxidizing in (II)
- (c) reducing in (I) and (II)
- (d) oxidizing in (I) and (II)

(2014)

- 11. The pair of compounds that can exist together is
 - (a) FeCl₃, SnCl₂
- (b) HgCl₂, SnCl₂
- (c) FeCl₂, SnCl₂
- (d) FeCl₃, KI
 - (2014)
- 12. A mixture of potassium chlorate, oxalic acid and sulphuric acid is heated. During the which element undergoes maximum change in the oxidation number?
 - (a) S

- (b) H
- (c) Cl
- (d) C
- (2012)
- 13. Oxidation numbers of P in PO ³⁻, of S in SO ²⁻ and

that of Cr in Cr,Q²⁻ are respectively

- (a) +3, +6 and +5
- (b) +5, +3 and +6
- (c) -3, +6 and +6
- (d) +5, +6 and +6

(2009)

(2008)

- **14.** Number of moles of MnO₄ required to oxidize one mole of ferrous oxalate completely in acidic medium will be
 - (a) 7.5 moles
- (b) 0.2 moles
- (c) 0.6 moles
- (d) 0.4 moles.
- **15.** Which is the best description of the behaviour of bromine in the reaction given below?

$$H_2O + Br_2 \rightarrow HOBr + HBr$$

- (a) Proton acceptor only
- (b) Both oxidised and reduced
- (c) Oxidised only
- (d) Reduced only

(2004)

- **16.** The oxidation states of sulphur in the anions SO $^{2-}$, S O $^{2-}$ and S O $^{2-}$ follow the order
 - 2 4
- 2 6

(a) $S_{4}O_{4}^{2-} < SO_{3}^{2-} < S_{6}O_{6}^{2-}$ (b) $SO_3^{2^{-1}} < SO_2^{2^{-1}} < SO_2^{2^{-1}} < SO_2^{2^{-1}}$

(c)
$$S_2O_4^{2-} < S_2O_6^{2-} < SO_3^{2-}$$

(d) $S_2O_4^{2-} < S_2O_6^{2-} < SO_2^{3-}$
 $S_2O_4^{2-} < SO_4^{3-}$ (2003)

- 17. Oxidation state of Fe in Fe₃O₄ is

- (1999)
- **18.** Reaction of sodium thiosulphate with iodine gives
 - (a) tetrathionate ion
- (b) sulphide ion
- (c) sulphate ion
- (d) sulphite ion.
- 19. The oxide, which cannot act as a reducing agent is
 - (a) CO₂
- (b) ClO₂
- (c) NO₂
- (d) SO_2
- (1995)

(1996)

20. Which substance is serving as a reducing agent in the following reaction?

 $14H^{+} + Cr \ \breve{O}^{2-} + 3Ni \rightarrow 7H \ O + 2Cr^{3+} + 3Ni^{2+}$

- (a) H⁺
- $(\dot{b}) \text{ Cr } O^{2-}$
- (c) H₂O
- (1994)(d) Ni
- **21.** The oxidation state of I in H_4IO^- is
 - (a) + 1
- (b) -1
- (c) + 7
- (d) + 5
- (1994)

(NEET 2018)

Redox Reactions and Electrode Processes

22. Consider the change in oxidation state of bromine corresponding to different emf values as shown in the given diagram:

$$BrO_{4}^{-\underline{1.82 \text{ V}}}BrO_{3}^{-\underline{1.5 \text{ V}}}HBrO_{4}$$

$$Br^{-\underline{1.0652 \text{ V}}}Br_{2} \underline{\qquad 1.595 \text{ V}}$$

Then the species undergoing disproportionation is

- (a) BrO
- (b) BrO
- (c) Br 3
- (d) HBrO

ANSWER KEY

- 1. 3. 5. 7. 10. (b) 2. (b) (c) 4. (b) (b) 6. (c) (a) 8. (b) (c) 15. (a) 19. 20. 11. (c) 12. (c) 13. (d) **14.** (d) (b) 16. 17. (d) 18. (a) (a) (d)
- 21. (c) 22. (d)

Hints & Explanations

- **1. (b)** : Redox reactions are those chemical reactions which involve both oxidation and reduction simultaneously.
- 2. (b): Only 'Al' lies above 'Zn' in electrochemical series, which can displace Zn from ZnCl₂ solution. Therefore, conc. of ZnCl₂ will decrease when kept in 'Al' container.

 $2Al + 3ZnCl_2 \rightarrow 2AlCl_3 + 3Zn$

3. (c): In CH_4 , oxidation number of carbon is -4 while in CCl_4 , oxidation number of carbon is +4. Thus, the change in oxidation number of carbon in the given reaction is from -4 to +4.

4. (b)

5. (b): Disproportionation reactions are those in which the same element/compound gets oxidised and reduced simultaneously.

$$2Cu^+ \rightarrow Cu^{2+} + Cu^0$$

$$3 \overset{+6}{M} n O_{4}^{2-} + 4 H^{+} - - - \frac{^{+7}}{^{2}} M n O_{4}^{-} + \overset{+4}{M} n O_{2} + 2 H_{2} O$$

6. (c): CrO_5 has butterfly structure having two peroxo bonds.

Peroxo oxygen has -1 oxidation state. Let oxidation state of Cr be $(x^2 + 4(-1) + 1(-2)) = (x^2 + 4(-1)) = (-1)$

7. (a):
$$\frac{+5}{\text{NNO}_3}$$
, $\frac{+2}{\text{NO}_3}$, $\frac{-3}{\text{NNO}_4}$, $\frac{-3}{\text{NH}_4\text{Cl}}$

8. (b): The correct balanced equation is

$$2MnO_4^- + 5C_2O_4^{2-} + 16H^+ - 2Mn^{2+} + 10CO_2 + 8H_2O_4$$

9. (d): $CaF_2 + H_2SO_4 \rightarrow CaSO_4 + 2HF$

Here, the oxidation state of every atom remains the same so, it is not a redox reaction.

 H_2O_2 acts as reducing agent in both the reactions in which O_2 is evolved.

11. (c): Both FeCl₂ and SnCl₂ are reducing agents with low oxidation numbers.

Decrease in oxidation state

12. (c):
$$\overset{+1}{K}\overset{-1}{ClO_3} + (COOH)_2 + \overset{+6}{H_2}\overset{+6}{SO_4} \longrightarrow$$

 $\overset{+6}{K_2}\overset{-1}{SO_4} + \overset{-1}{K}\overset{-1}{Cl} + \overset{-1}{CO_2} + \overset{+}{H_2}O$

Maximum change in oxidation number occurs in case of chlorine, *i.e.*, from +5 to -1.

13. (d): Let oxidation number of P in PO $_4^{3-}$ be x. $\therefore x + 4(-2) = -3 \Rightarrow x = +5$

Let oxidation number of S in SO_4^{2-} be y.

$$\therefore y + 4(-2) = -2 \implies y = +6$$

Let oxidation number of Cr in $\operatorname{Cr}_2\operatorname{O}_7^{2-}$ be z.

14. (d):
$$[5e^{-} + MnO^{-4} + 8H^{+} \rightarrow Mn^{2+} + 4H \ \Theta ..(i)] \times 2$$

 $[CO^{-} \rightarrow 2e^{-} + 2CO_{2} \quad (ii)] \times 5$

On addition, we get $2MnO^{-} + 16H^{+} + 5CO^{2-} \rightarrow 2Mn^{2+} + 10CO + 8HO$

2 moles of MnO₄ required to oxidise 5 moles of oxalate. \therefore Number of moles of MnO₄ required to oxidise 1 mole of oxalate = 2/5 = 0.4

15. (b): H O +
0
 \rightarrow HOBr HBr

In the above reaction, the oxidation number of Br_2 increases from zero (in Br_2) to +1 (in HOBr) and decreases from zero (in Br_2) to -1 (in HBr). Thus, Br_2 is oxidised as well as reduced and hence, it is a redox reaction.

16. (a):
$$SO_3^{2-}$$
: $x + (-2)3 = -2$ or $x - 6 = -2$ or $x = +4$
 $S_2Q_3^{2-}$: $2x + (-2)4 = -2$

or
$$2x - 8 = -2$$
 or $2x = +6$ $\therefore x = +3$
S₂@ ²⁻: $2x + (-2)6 = -2$

or
$$2x - 12 = -2$$
 or $2x = +10$: $x = +5$
Oxidation states follow the order: $SO^{2-} < SO^{2-} < SO^{2-}$

17. (d):
$$Fe_3O_4$$
: $3x + 4(-2) = 0 \Rightarrow x = +\frac{3}{3}$

18. (a):
$$2Na_2S_2O_3 + I_2 \rightarrow Na_2S_4O_6 + 2 \text{ NaI}$$

(Sodium tetrathionate)

- **19.** (a): Since carbon is in its maximum oxidation state of +4, therefore, carbon dioxide (CO₂) cannot act as a reducing agent.
- **20. (d)** : Since the oxidation number of Ni increases from 0 to 2, therefore it acts as a reducing agent.
- **21.** (c): Let x = Oxidation state of I. Since oxidation state of H = +1 and oxidation state of O = -2, therefore for $H_4IO_6^-$, we get

$$(4 \times 1) + x + (6 \times -2) = -1 \text{ or } x = +7$$

22. (d): For a reaction to be spontaneous, E°_{cell} should be positive as $\Delta G^{\circ} = -nFE^{\circ}_{cell}$

$$HBrO \xrightarrow{\longrightarrow} Br_O \stackrel{:}{\xrightarrow{\longrightarrow}} E^\circ = 1.595 \text{ V, SRP (cathode)}$$

$$2HBrO \longrightarrow Br_2 + BrO_3$$

$$E^{\circ}_{\text{cell}} = \text{SRP (cathode)} - \text{SRP (anode)}$$

= 1.595 - 1.5 = 0.095 V

$$E^{\circ}_{\text{cell}} > 0 \Rightarrow \Delta G^{\circ} < 0 \text{ (spontaneous)}$$

